76,477 research outputs found

    Ground truth applications to orbit refinements

    Get PDF
    A weighted least-squares recursive estimator program is reported for simulating spacecraft orbital position by analyzing earth and sun sensor data. The program uses constant time adjustment for a set of ephemeris data to eliminate intrack error and to improve attitude determination accuracy

    X-ray Binaries and Globular Clusters in Elliptical Galaxies

    Full text link
    The X-ray emission from normal elliptical galaxies has two major components: soft emission from diffuse gas and harder emission from populations of accreting (low-mass) stellar X-ray binaries (LMXB). If LMXB populations are tied to the field stellar populations in galaxies, their total X-ray luminosities should be proportional to the optical luminosities of galaxies. However, recent ASCA and Chandra X-ray observations show that the global luminosities of LMXB components in ellipticals exhibit significant scatter at a given optical luminosity. This scatter may reflect a range of evolutionary stages among LMXB populations in ellipticals of different ages. If so, the ratio of the global LMXB X-ray luminosity to the galactic optical luminosity, L_LMXB/L_opt, may be used to determine when the bulk of stars were formed in individual ellipticals. To test this, we compare variations in L_LMXB/L_opt for LMXB populations in ellipticals to optically-derived estimates of stellar ages in the same galaxies. We find no correlation, implying that L_LMXB/L_opt variations are not good age indicators for ellipticals. Alternatively, LMXBs may be formed primarily in globular clusters (through stellar tidal interactions), rather than in the stellar fields of galaxies. Since elliptical galaxies exhibit a wide range of globular cluster populations for a given galaxian luminosity, this may induce a dispersion in the LMXB populations of ellipticals with similar optical luminosities. Indeed, we find that L_LMXB/L_opt ratios for LMXB populations are strongly correlated with the specific globular cluster frequencies in elliptical galaxies. This suggests that most LMXBs were formed in globular clusters.Comment: 5 pages, emulateapj5 style, 2 embedded EPS figures, to appear in ApJ Letter

    Optimal Compression of Floating-point Astronomical Images Without Significant Loss of Information

    Get PDF
    We describe a compression method for floating-point astronomical images that gives compression ratios of 6 -- 10 while still preserving the scientifically important information in the image. The pixel values are first preprocessed by quantizing them into scaled integer intensity levels, which removes some of the uncompressible noise in the image. The integers are then losslessly compressed using the fast and efficient Rice algorithm and stored in a portable FITS format file. Quantizing an image more coarsely gives greater image compression, but it also increases the noise and degrades the precision of the photometric and astrometric measurements in the quantized image. Dithering the pixel values during the quantization process can greatly improve the precision of measurements in the images. This is especially important if the analysis algorithm relies on the mode or the median which would be similarly quantized if the pixel values are not dithered. We perform a series of experiments on both synthetic and real astronomical CCD images to quantitatively demonstrate that the magnitudes and positions of stars in the quantized images can be measured with the predicted amount of precision. In order to encourage wider use of these image compression methods, we have made available a pair of general-purpose image compression programs, called fpack and funpack, which can be used to compress any FITS format image.Comment: Accepted PAS

    Lossless Astronomical Image Compression and the Effects of Noise

    Full text link
    We compare a variety of lossless image compression methods on a large sample of astronomical images and show how the compression ratios and speeds of the algorithms are affected by the amount of noise in the images. In the ideal case where the image pixel values have a random Gaussian distribution, the equivalent number of uncompressible noise bits per pixel is given by Nbits =log2(sigma * sqrt(12)) and the lossless compression ratio is given by R = BITPIX / Nbits + K where BITPIX is the bit length of the pixel values and K is a measure of the efficiency of the compression algorithm. We perform image compression tests on a large sample of integer astronomical CCD images using the GZIP compression program and using a newer FITS tiled-image compression method that currently supports 4 compression algorithms: Rice, Hcompress, PLIO, and GZIP. Overall, the Rice compression algorithm strikes the best balance of compression and computational efficiency; it is 2--3 times faster and produces about 1.4 times greater compression than GZIP. The Rice algorithm produces 75%--90% (depending on the amount of noise in the image) as much compression as an ideal algorithm with K = 0. The image compression and uncompression utility programs used in this study (called fpack and funpack) are publicly available from the HEASARC web site. A simple command-line interface may be used to compress or uncompress any FITS image file.Comment: 20 pages, 9 figures, to be published in PAS

    A Renormalization Group Method for Quasi One-dimensional Quantum Hamiltonians

    Full text link
    A density-matrix renormalization group (DMRG) method for highly anisotropic two-dimensional systems is presented. The method consists in applying the usual DMRG in two steps. In the first step, a pure one dimensional calculation along the longitudinal direction is made in order to generate a low energy Hamiltonian. In the second step, the anisotropic 2D lattice is obtained by coupling in the transverse direction the 1D Hamiltonians. The method is applied to the anisotropic quantum spin half Heisenberg model on a square lattice.Comment: 4 pages, 4 figure

    Paleobiomarkers and defining exobiology experiments for future Mars experiments

    Get PDF
    Mars is a cold, dry planet with an oxidizing surface bombarded by ultraviolet and ionizing radiation, making prospects for an extant Mars biota bleak. Yet, it is suggested that early Earth and early Mars were similar enought that life may have evoled on Mars. If life did evolve on Mars, what evidence for its existence might we find? What constitutes a Martian paleobiomarker, and how can we distinguish such a marker from abiotically produced substances? The topics studied to answer this question include carbon and nitrogen cycling, as well as the stability and relative abundance of their intermediates in microbially dominated ecosystems. The microbially dominated ecosystems studied are the crytoendolithic microbial community living within sand rocks, the endoevaporite microbial community living inside salt crystals, and the microbial communities living beneath perennially ice-covered lakes and hypersaline ponds. The nitrogen cycle of these communities ranges from simple, where only assimilation occurs, to the more complex, where a complete cycle occurs. The carbon cycle of these communities appears to be complete

    Spin-tunnel investigation of a 1/25-scale model of the General Dynamics F-16XL airplane

    Get PDF
    A spin-tunnel investigation of the spin and recovery characteristics of a 1/25-scale model to the General Dynamics F-16XL aircraft was conducted in the Langley Spin Tunnel. Tests included erect and inverted spins at various symmetric and asymmetric loading conditions. The required size of an emergency spin-recovery parachute was determined

    Neel order in square and triangular lattice Heisenberg models

    Full text link
    Using examples of the square- and triangular-lattice Heisenberg models we demonstrate that the density matrix renormalization group method (DMRG) can be effectively used to study magnetic ordering in two-dimensional lattice spin models. We show that local quantities in DMRG calculations, such as the on-site magnetization M, should be extrapolated with the truncation error, not with its square root, as previously assumed. We also introduce convenient sequences of clusters, using cylindrical boundary conditions and pinning magnetic fields, which provide for rapidly converging finite-size scaling. This scaling behavior on our clusters is clarified using finite-size analysis of the effective sigma-model and finite-size spin-wave theory. The resulting greatly improved extrapolations allow us to determine the thermodynamic limit of M for the square lattice with an error comparable to quantum Monte Carlo. For the triangular lattice, we verify the existence of three-sublattice magnetic order, and estimate the order parameter to be M = 0.205(15).Comment: 4 pages, 5 figures, typo fixed, reference adde

    Measured and predicted shock shapes and aerodynamic coefficients for blunted cones at incidence in helium at Mach 20.3

    Get PDF
    Experimental values of shock shapes (alpha = 0 degrees and 10 degrees) and static aerodynamic coefficients (alpha = -4 degrees to 12 degrees) for sharp and spherically blunted cones having cone half-angles of 30, 45, 60, and 70 degrees and nose bluntness ratios of 0, 0.25, and 0.50 are presented. Shock shapes were also measured at 0 degree angle of attack by using a flat-faced cylinder (90 degree cone) and a hemispherically blunted cylinder (sphere). All tests were conducted in helium (gamma = 5/3) at a free-stream Mach number of 20.3 and a unit free-stream Reynolds number of 22,400,000 per meter. Comparisons between measured values and predicted values were made by using several numerical and simple engineering methods
    • …
    corecore